A COMPARISON BETWEEN THE SAMBA3 AND LIKEWISE LWIOD FILE SERVERS

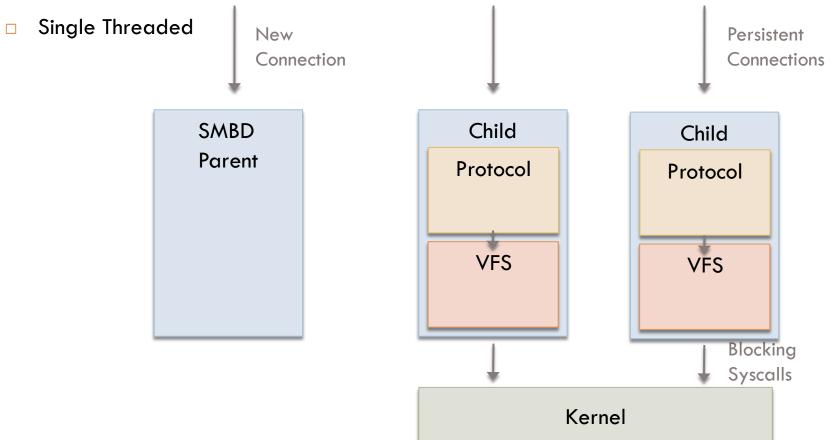
May 7, 2010

Outline

- Overview
- Architecture
- Feature Set
- Administrator Perspective
- Developer Perspective

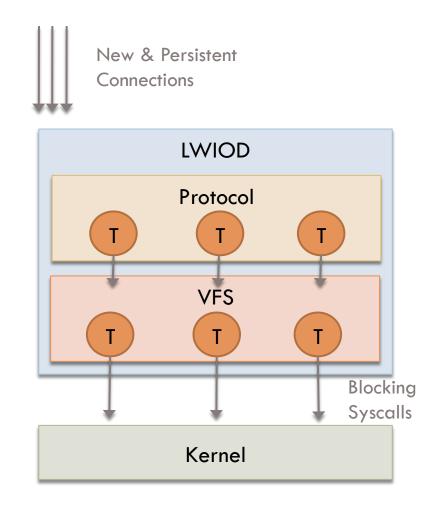
Overview

- 18 years development
- □ GPLv3
- Personal copyright
- www.samba.org


- 1.5 years development
- □ GPLv2+
- Corporate copyright
- www.likewiseopen.org

Comparison

- □ Git "master" branches as of April 17, 2010
- □ Focus on file server functionality
- Focus on Linux platform
- Only small discussion of:
 - 🗖 Samba 4
 - winbindd
 - 🗖 Isassd
- □ No discussion of:
 - Clustering


SMBD Architecture

Multi-Process

LWIOD Architecture

- Single Process
- Multi-Threaded

Problem Classes

- Single Stream Read/Write
- Blocking Operations
 - Truncate of large file
- Simultaneous Sessions
 - IIS / Terminal Server
- Connection Throttling

Single Stream Read/Write

+ Simple, direct, I/O

- + Pipelined network I/O written in parallel
- Thread context switch overhead

- Depends on client network pipelining. Windows Vista or greater.
- Depends on kernel I/O interface: read()/write(), aio, sendfile(), splice().

Blocking Operations

Network and file
 system interfaces are
 serialized

- + Parallel syscalls
- + Network I/O not blocked by file system operations

+ Greater responsiveness

Extreme case: ECHO packets go unresponded and client disconnects.

Simultaneous Sessions

I/O of user2 blocked
 by user1 from same
 client

+ All network I/O serviced in parallel

 Windows SMB client implementation multiplexes multiple sessions over single transport connection.

Connection Throttling

- + "max smbd processes"
- No distinction between idle and active connections
- New connection degradation all or nothing.

+ New connections limited by same thread pool as all other operations

Architecture Conclusion

- LWIOD should solve a number of scalability issues in specific workflows.
 - More graceful degradation under load.
- □ LWIOD *should* have less total resource utilization.
- Multi-threaded model forfeits some POSIX support.
 - Kernel access checks
 - fcntl() locking

Feature Set

	SMBD	LWIOD
SMB Dialect	<= NT LM 0.12	== NT LM 0.12
SMB2 Dialect	SMB 2.002	SMB 2.002
NetBios Transport	A	×
Share Level Security	~	×
Share Mode Locks	A	A
Oplocks		✓
Change Notify	A	A
Byte Range Locks	0	0
Access Control Lists	0	Ο
Alternate Data Streams	✓	×
Shadow Copy	✓	Ο
Vorks	O Mostly Works	🗙 Doesn't Work

SMB Protocol Dialect / NetBios

+ Unix Extensions

- + SNIA Reference support
- Unsupported:
 - Port 139
 - NT4 clients
 - OS X <= 10.4 clients</p>
- No password-less login

SMB2

SMB v1 equivalent support in both.
SMB2 2.002 == Windows Vista / 2008 Server
No SMB2 only features:
Durable / Resilient Handles
Leases
Credits

Share Mode / Oplock / Change Notify

- + Linux kernel oplock partial support
- + Linux kernel notify support

- Both: Functionality implemented in user space.
- □ No cross-protocol support without kernel implementation.

Byte Range Locks

+ Can back with POSIX locks

- □ Both: Implement Windows locking semantics in user space.
- Both: Use user space queue that doesn't guarantee fairness.
- □ Both: Provide strict locking semantics for SMB only traffic.

Access Control Lists

	SMBD	LWIOD
Access Checks	Kernel	User Space
Storage in Xattr		✓
Map to Mode Bits	✓	✓
Map to POSIX ACL	✓	×
Map to NFSv4 ACL	Ο	×
NT4 Style ACL	→	×

□ SMBD: xattr storage AND POSIX ACL

LWIOD: xattr storage OR mode bits

Access Control Lists

- Best choice:
 - + Perfect POSIX support
 - + Perfect Windows
 - + get/set
 - Imperfect Windows
 - access check

- Best choice:
 - + Perfect Windows support
 - No POSIX support

Access Control Lists

- Both: Lossy conversion between NTFS ACL and mode bits / POSIX ACL
 - RWX != Full Control
 - Groups owning files
 - Deny aces and canonical order
- □ Both: Rely on SID to Unix ID mapping
 - Unmappable SIDs can't be stored
- □ NTFS ACLs to POSIX sucks no matter what you do!

Alternate Data Streams

+ ADS storage in hidden subdirectory tree

+ ADS storage in xattrs

- Support for ::\$DATA stream only

Shadow Copy

- + Allows enumeration / restore
- + Conversion of wire name to directory name

 POSIX VFS module lacks enumeration / restore

- Both: Support parsing of @GMT path format in protocol head.
- Both: Rely on underlying file system to implement snapshots.

Feature Set (continued)

	SMBD	LWIOD
Srvsvc	Ο	A
DOS File Attributes	✓	✓
Distributed File System	✓	×
Signing / Sealing	A	✓
Privileges	✓	×
Auditing	0	×
IPv6	✓	×
Copy Chunk	×	×

Non-File Server Functionality

	SMBD	LWIOD
Printing / spoolss	A	×
NetBios Name Server	✓	×
NT4 Domain Server	✓	×
Active Directory Server	0	×

Feature Conclusion

- SMBD far more mature in number of features.
- No technical reason for lack of features in LWIOD simply a matter of development time and effort.
- □ LWIOD supports newer clients only.
- Some features cannot be perfectly duplicated on POSIX regardless of server implementation.

 - BRL

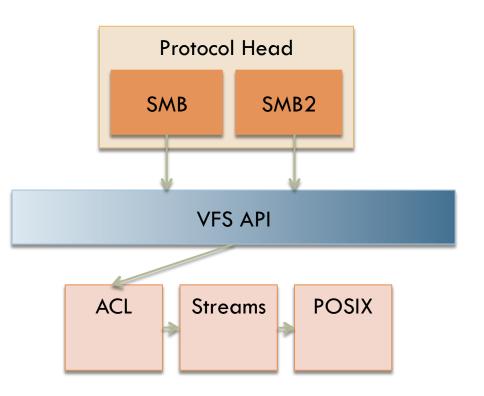
Administrating / Configuration

- Stored in .ini text file
- o 374 Total Parameters
- o 146 Share Parameters
- Alternate registry configuration storage

- $\circ~$ Stored in registry
- 14 Parameters (lwiod only)
- + MMC support by default
- Examples of missing config:
 - Access based enum
 - Share path substitution
 - Name mangling

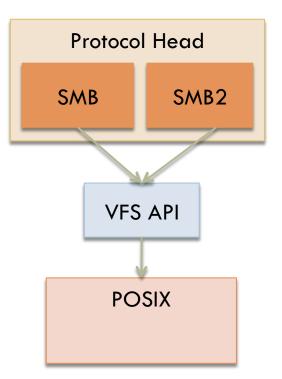
Developer Perspective

- Both: Provide division between protocol marshalling and kernel file system interface.
- Both: OEM's task is to implement a VFS module
- Wildly different coding style


SMBD VFS

Hybrid Interface

 POSIX / NTFS / Other


 113 functions
 Chained modules
 Chained modules
 OS specific modules

 irixacl, hpuxacl, zfsacl
 ~30 modules
 Partial API

LWIOD VFS

- IOMGR Interface
 - Abstract Device Driver API
- □ 16 functions
 - Includes IOCTL
 - Every call can go async
- No chaining or filtering
- Generic POSIX module
 - No OS specific functionality yet
 - Reference implementation
- 1 Module

Questions?

Contact

Steven Danneman sdanneman@isilon.com steven@samba.org